Нефтепродукты попали в водохранилище подмосковных Химок, передаёт «360».
По данным Федерального агентства водных ресурсов (Росводресурсы), площадь разлива составила почти 23 тысячи кв. м. В министерстве экологии и природопользования Московской области сообщили, что на месте загрязнения устанавливаются боновые заграждения.
Разлив нефтепродуктов был обнаружен 25 июня. Тогда появилась информация, что загрязненные сточные воды попали в реку Грачевка (Чернавка), которая впадает в Химкинское водохранилище. Минэкологии завело административное дело.
По предварительной информации, источником загрязнения стал один из коллекторов ливневой канализации, обслуживающий муниципальное предприятие «Химводосток».
В Росводресурсах сообщили, что пробы выявили превышение допустимой концентрации нефтепродуктов более чем в тысячу раз. Кроме того, была зафиксирована гибель рыбы. Подведомственные учреждения круглосуточно ведут работы по откачке нефтепродуктов, обработке загрязнения сорбентами и предотвращению дальнейшего распространения.
По данным Минэкологии Подмосковья, МУП «Химводосток» расчищает русло реки, обследует колодцы ливневой канализации и откачивает из них нефтепродукты.
Все предприятия, причастные к сбросам отходов и неочищенных стоков в ливневый коллектор, по итогам обследования будут установлены и привлечены к ответственности.
По словам замглавы Химок Дмитрия Чистякова, сейчас ликвидация аварии завершается. Источник сброса найден. Предприятием занимаются следственные органы и Росприроднадзор.
Ликвидация разливов нефти
Фото: icdo.org
По данным Гринписа России, в 2018 году в России было зарегистрировано 8 126 разливов нефти. Абсолютными рекордсменами по загрязнению окружающей среды стали компании «Роснефть» (4 253 случая) и «ЛУКОЙЛ» (1 508).
В WWF также утверждают, что каждый год в нашей стране разливается около 4,5 млн т нефти. И главная причина тому – изношенные нефтепроводы. По статистике, в том же 2018 году подавляющее большинство аварий (97%) случилось из-за коррозии труб.
Конечно, утечки нефти происходят не только из-за эксплуатации устаревшего оборудования. Потенциальным источником загрязнения может стать любой объект предприятия — скважины, нефтехранилища, морские нефтяные платформы, приёмо-сдаточные пункты и прочее.
Как доказательство — мировой опыт аварий, связанных с утечкой нефти. Пожалуй, самая масштабная катастрофа подобного рода произошла в 2010 году — в Мексиканском заливе в результате взрыва нефтяной платформы в воду попало около 5 млн баррелей.
Безусловно, факты утечек нефти, даже небольших, сейчас находятся на строгом контроле государственных органов. Так, в действующем российском законодательстве чётко прописано, что нефтяные компании обязаны принимать меры по предупреждению и ликвидации разливов нефти и нефтепродуктов в водоёмы.
Максимум, что грозит предприятию в случае аварии, — штрафные санкции с временной приостановкой деятельности. Поэтому может показаться, что для нефтяной компании разлив нефти — не такая уж трагедия.
Кроме того, в России не перестаёт быть актуальной проблема незаконных врезок в нефтепроводы.
Между тем, из-за халатного отношения к требованиям предупреждения аварий предприятия самовольно выбрасывают свой главный источник заработка. И параллельно тратят уйму денег и времени на устранение последствий от попадания нефти в окружающую среду.
Какими же способами сейчас осуществляют ликвидацию разливов нефти?
Содержание
Методы ликвидации разливов нефти
Для ликвидации аварийных разливов нефти (ЛАРН) существует 4 основных метода: механический, термический, физико-химический и биологический.
Самый распространённый метод – механический – представляет собой обычный сбор разлитой нефти с поверхности воды (либо выемку загрязнённой почвы).
Сбор нефти в море
В море поражённый участок ограждается боновыми заграждениями, затем в ход идут различные нефтесборные системы и устройства (например, скиммеры).
При физико-химическом методе ликвидации нефтяного разлива используются различные сорбенты и диспергенты. Сорбенты после попадания в водную среду моментально начинают впитывать углеводороды, оставляя на поверхности остатки нефтенасыщенного материала, собрать который не представляет особого труда.
К помощи диспергентов прибегают в особо тяжёлых случаях, когда разлитую нефть невозможно удалить механическим сбором. Вещество распыляют на нефтяное пятно, затем диспергент расщепляет маслоплёнку, не позволяя ей «разрастись».
Термический метод ликвидации утечки нефти – это выжигание нефтяного слоя сразу же после попадания «чёрного» топлива в окружающую среду. Как правило, этот способ применяют параллельно с другими методами.
И последний, биологический метод используется после «первичной обработки» — механического сбора нефти или запуска в среду сорбентов или диспергентов.
Для того, чтобы способ сработал, необходимо, чтобы толщина слоя нефти не превышала 0,1 мм. В загрязнённую среду запускают суспензии с бактериями-деструкторами, которые способствуют естественной деградации углеводородов.
Технологии на месте не стоят
Помимо традиционных методов борьбы с утечками нефти, в мире постоянно появляются новые решения — учёные разрабатывают массу технологий ликвидации разливов.
Например, в Норвегии придумали «пылесос» для сбора нефтяных пятен. Агрегат способен самостоятельно помещать в загрязнённую воду сорбент, перемешивать его. После того, как вещество собрало нефть, устройство вынимает его и засасывает.
А учёные одного американского института изготовили из нановолокон гигантскую мембрану, которая поглощает исключительно разлитую нефть, оставляя без внимания воду. После сбора «чёрного» топлива мембрану нагревают, в результате чего нефть высвобождается.
Целое судно-нефтесборщик изготовили в Германии: корабль очищает загрязнённую нефтью морскую воду с помощью фильтрационного резервуара.
Перед началом работы обычное на первый взгляд судно раскрывает свой корпус, формируя своеобразный треугольник. Благодаря такому решению оно может собирать нефть на поверхности площадью 40 м2 в час и толщиной плёнки до 2 мм.
Китайские учёные разработали биомиметическую пену, отделяющую нефть от воды. Благодаря полой трубчатой структуре материал обладает абсорбирующей и фильтрационной способностью: нефть задерживается, а вода спокойно проходит сквозь пену.
Довольно необычный, но весьма действенный, и, что главное, экологичный способ ликвидации разливов нефти – использование микробов. Да, в мире есть бактерии, которые буквально поедают углеводороды – их, например, уже успешно применяли во время катастрофы в Мексиканском заливе.
А не так давно учёные из России нашли морозоустойчивые микроорганизмы, способные поглощать углеводороды в суровых погодных условиях.
Ещё одну уникальную технологию — «Аэрощуп» — разработали в Биологическом институте ТГУ. Суть инновации заключается в следующем: на дно водоёма опускается шланг, с помощью которого в место разлива под высоким давлением подаётся мощная струя воздуха. Нефть, попавшая в водоём, поднимается на поверхность, где её собирают специальные приёмники.
.sp-force-hide { display: none;}.sp-form { display: block; background: rgba(255, 255, 255, 1); padding: 30px; width: 100%; max-width: 100%; border-radius: 0px; -moz-border-radius: 0px; -webkit-border-radius: 0px; border-color: #c49a6c; border-style: solid; border-width: 1px; font-family: Arial, «Helvetica Neue», sans-serif; background-repeat: no-repeat; background-position: center; background-size: auto; margin-bottom:1.5em;}.sp-form input { display: inline-block; opacity: 1; visibility: visible;}.sp-form .sp-form-fields-wrapper { margin: 0 auto; width: 90%;}.sp-form .sp-form-control { background: #ffffff; border-color: #cccccc; border-style: solid; border-width: 3px; font-size: 15px; padding-left: 8.75px; padding-right: 8.75px; border-radius: 0px; -moz-border-radius: 0px; -webkit-border-radius: 0px; height: 35px; width: 100%;}.sp-form .sp-field label { color: #444444; font-size: 13px; font-style: normal; font-weight: bold;}.sp-form .sp-button { border-radius: 0px; -moz-border-radius: 0px; -webkit-border-radius: 0px; background-color: #96693d; color: #ffffff; width: 133px; font-weight: 700; font-style: normal; font-family: «Segoe UI», Segoe, «Avenir Next», «Open Sans», sans-serif; box-shadow: inset 0 -2px 0 0 #6a4b2b; -moz-box-shadow: inset 0 -2px 0 0 #6a4b2b; -webkit-box-shadow: inset 0 -2px 0 0 #6a4b2b;}.sp-form .sp-button-container { text-align: center; width: auto;}
Понравился материал? Подпишитесь
на отраслевой дайджест и получайте подборку статей каждый месяц.
* * Подписаться
- Теги:
- добыча нефти
- загрязнение
- ликвидация
- нефть
- разлив нефти
- технологии
- экология
Скормить микробам
«Когда 90-95 процентов от общего объема загрязнения отработано, можно использовать микробов, чтобы полностью очистить то или иное местообитание, добиться стопроцентного эффекта», — говорит сотрудник кафедры микробиологии биологического факультета МГУ Илья Серёжкин.
Непосредственно микробиологические препараты бывают двух типов:
-
жидкая биомасса
-
порошки с высушенными микроорганизмами.
Биомассу распыляют на поверхность загрязнения — ее легко распределить максимально равномерно, и такие препараты часто применяют на болотах. Но они обладают рядом недостатков, признает Серёжкин: биомассу сложно доставлять к месту использования, нужна предварительная адаптация микроорганизмов, необходимо наращивать большое количество биомассы близ места аварии, что не всегда возможно, потому что для этого требуются лабораторные условия и билогический реактор со средой.
Гораздо удобнее применять высушенные микроорганизмы. Для их приготовления микробную биомассу высушивают с помощью сорбентов или такими биотехнологическими методами, как олеофобное или распылительное высушивание — и получают легкий порошок со спорами микробов и живыми клетками. Такие препараты компактны, они долго хранятся (от полугода до двух лет), их удобно хранить, доставлять и применять.
Биохимический цикл микробного преобразования нефтепродуктов достаточно сложен. Один из основных компонентов нефти и нефтепродуктов — это алканы, длинные цепочки, состоящие из углерода и водорода. Микроорганизмы постепенно отщепляют от этой цепочки функциональные группы и используют их для синтеза собственных молекул. Так происходит до последнего атома водорода в цепи. Если всю сложную последовательность биохимического цикла алканов промотать до конечного пункта, то на выходе — в идеальных условиях — получаются продукты полного окисления органических соединений: углекислый газ и вода.
Под «микробами» в этом контексте обычно подразумевают бактерий. Но и некоторые виды грибов тоже способны переваривать углеводороды, правда быстро нарастить их биомассу биотехнологическим путем сложнее. Однако существуют патенты микробиологических препаратов по очистке водных поверхностей, в составе которых присутствуют микромицеты или дрожжевые грибы рода Candida, близкие родственники которых обитают в составе микрофлоры слизистых человека.
Что делать с грунтом
Весь арсенал упомянутых методов справедлив для сбора углеводородов с поверхности воды. Если же разлив произошёл на грунт, и нефтепродукты в него просочились, то собрать их гораздо сложнее.
Как рассказывает доцент геологического факультета МГУ Ия Григорьева, долгое время считалось, что загрязнения такого рода не проходят глубже почвенно-растительного горизонта, то есть остаются в верхних 20-50 сантиметрах грунта. Однако исследования, по словам ученой, показали, что нефтепродукты по трещинам, скважинам и порам могут просачиваться значительно глубже.
Эту же точку зрения высказывает и другая собеседница N + 1, Любовь Зенитова. По ее словам, основные загрязнения грунта нефтью случаются вокруг мест ее добычи. В России большая их часть расположена среди болот Западной Сибири, зачастую в труднодоступных местах. Чтобы ликвидировать загрязнения там, как правило, применяют сорбенты. Причем недостаточно, чтобы сорбент хорошо впитывал. Он также должен быть легким, компактым, легко утилизируемым и морозостойким.
Таких инструментов немного. Среди них — вспененный полипропилен, который наносится на поверхность из установок, как монтажная пена. Такие установки могут быть передвижными, их можно подвесить к вертолетам, а сорбирующий материал занимает мало места. Нанесенная на поверхность полимерная пена напоминает пористое эластичное одеяло, укрывающее поверхность и впитывающее из него загрязнения.
А затем присматривать
Последний этап ликвидации разливов нефтепродуктов — экологический мониторинг. В норильской катастрофе в окружающую среду попало дизельной топливо, в котором, в отличие от сырой нефти, содержится много ароматических углеводородов. Многие из них, в частности, бензольные соединения, — канцерогены.
Ароматические соединения плохо растворяются в воде и легко изымаются вместе с нефтепродуктами. Однако учитывая масштаб катастрофы, следует ожидать, считает Алексей Книжников, что большое их количество попадет по течению рек ниже установленных бонов.
В первую очередь от них пострадают водные организмы, и этого негативного влияния не избежать.
«Река Амбарная, и озеро уже очень длительное время находились под негативным воздействия от разных источников загрязнения со стороны комбината. Там и тяжелые металлы, там и прорывы трубопроводов были, — говорит Книжников. — Ихтиофауна этого озера в угнетенном состоянии. Там раньше водился осетр, таймень, проводились рыбалки. Они и до сих пор там проводятся, но эту рыбу было не рекомендовано есть. Теперь она будет крайне опасна».
Система экологического мониторинга необходима для контроля распространения таких веществ. С ее помощью можно выявить отсроченные негативные эффекты аварий и разработать комплекс мер, чтобы их предотвратить. Систему мониторинга, по мнению Книжникова, нужно развернуть на долгий срок — около двух лет — на большие территории, начиная от места аварии и вплоть до Карского моря.
Экологический мониторинг включает и экспедиции, и регулярный отбор проб грунта и воды для химического, микробиологического и гидробиологического анализа, и контроль популяций растений и животных. Универсальных мониторинговых мер не существует: необходимо учесть географические особенности, природу и объем загрязнения. Важно учитывать и бюджет: долгосрочный мониторинг на большой территории с использованием широкого арсенала методов — мера крайне затратная.
Но чем глобальнее мониторинг, тем качественнее можно выявить даже неочевидные экологические последствия катастроф.
Никита Лавренов при участии Сергея Кузнецова
Оригинал