Парниковый газ. Источники выбросов парниковых газов

Парниковый газ — это газ, который характеризуется прозрачностью, что обеспечивает невидимость, и высокой степенью поглощения в инфракрасном диапазоне. Выделение подобных веществ в окружающую среду становится причиной парникового эффекта.

Откуда берутся парниковые газы?

Парниковые газы присутствуют в атмосферах всех планет Солнечной системы. Высокая концентрация данных веществ становится причиной возникновения одноименного явления. Речь идет о парниковом эффекте. Для начала стоит сказать о его положительной стороне. Именно благодаря данному явлению, на Земле поддерживается оптимальная температура для зарождения и поддержания различных форм жизни. Тем не менее, когда концентрация парниковых газов завышена, можно говорить о серьезной экологической проблеме.
Изначально причиной появления парниковых газов были естественные природные процессы. Так, первые из них образовались в результате нагревания Земли солнечными лучами. Таким образом, часть тепловой энергии не уходила в космическое пространство, а отражалась газами. В результате создавался эффект нагревания, аналогичный тому, который происходит в теплицах.
В тот момент, когда климат Земли только формировался, значительная доля парниковых газов вырабатывалась вулканами. На тот момент водяной пар и углекислый газ в огромных количествах попадали в атмосферу и концентрировались в ней. Тогда парниковый эффект был настолько сильным, что Мировой океан буквально закипал. И лишь с появлением на планете зеленой биосферы (растений) ситуация стабилизировалась.
Сегодня проблема парникового эффекта особенно актуальна. Она во многом обусловлена развитием промышленности, а также безответственного отношения к природным ресурсам. Как ни странно, не только промышленное производство становится причиной ухудшения экологии. Даже такая безобидная на первый взгляд отрасль, как сельское хозяйство, также представляет собой опасность. Наиболее разрушительным является животноводство (а именно продукты жизнедеятельности крупного скота), а также использование химических удобрений. Также неблагоприятно сказывается на атмосфере выращивание риса.

Водный пар

Водяной пар — это парниковый газ естественного происхождения. Несмотря на то что он выглядит безобидным, именно на него приходится 60 % парникового эффекта, который является причиной глобального потепления. Учитывая, что температура воздуха непрерывно повышается, значение концентрации водяного пара в воздухе становится все выше, а потому есть основания говорить о замкнутой цепи.

Положительной стороной испарения воды можно считать так называемый антипарниковый эффект. Данное явление заключается в формировании значительной массы облаков. Они, в свою очередь, в некоторой степени защищают атмосферу от перегрева посредством попадания солнечных лучей. Поддерживается некоторое равновесие.

Углекислый газ

Углекислый газ — парниковый газ, который является одним из самых распространенных в атмосфере. Его источником могут послужить вулканические выбросы, а также процесс жизнедеятельности биосферы (а особенно человека). Безусловно, часть углекислого газа поглощается растениями. Тем не менее за счет процесса гниения они выделяют аналогичное количество данного вещества. Ученые утверждают, что последующее увеличение концентрации газа в атмосфере может привести к катастрофическим последствиям, а потому постоянно проводятся изыскания путей очищения воздуха.

Метан

Метан — это парниковый газ, который живет в атмосфере около 10 лет. Учитывая, что этот период является сравнительно коротким, у данного вещества наблюдается наибольший потенциал для устранения последствий глобального потепления. Несмотря на это, парниковый потенциал метана более, чем в 25 раз опаснее углекислоты.

Источник парниковых газов (если речь идет о метане) — это продукты жизнедеятельности скота, выращивание риса, а также процесс горения. Наибольшая концентрация данного вещества наблюдалась в первом тысячелетии, когда сельское хозяйство и скотоводство были основными видами деятельности. К 1700 году данный показатель значительно снизился. На протяжении нескольких последних столетий концентрация метана снова стала расти, что связано с большим количеством сжигаемого топлива, а также разработкой месторождений угля. На данный момент отмечается рекордный показатель метана в атмосфере. Тем не мене за последнее десятилетие скорость роста данного показателя немного замедлилась.

Озон

Без такого газа, как озон, жизнь на Земле была бы невозможной, ведь он выступает в качестве барьера от агрессивных солнечных лучей. Но защитную функцию выполняет лишь стратосферный газ. Если же говорить о тропосферном, то он является токсичным. Если принять во внимание данный парниковый газ в пересчете на углекислый газ, то на него приходится 25 % эффекта глобального потепления.
Время жизни вредного озона составляет около 22 дней. Он удаляется из атмосферы путем связывания в почве и последующего разложения под действием ультрафиолета. Отмечается, что показатель содержания озона может значительно варьироваться по географическому признаку.

Закись азота

Около 40% закиси азота поступает в атмосферу из-за использования удобрений и развития химической промышленности. Наибольшее количество данного газа вырабатывается в тропических районах. Здесь эмитируется до 70 % вещества.

Виды парниковых газов

В список парниковых газов, согласно приложению «А» к Киотскому протоколу, входят следующие соединения:

Водяной пар — самый распространенный парниковый газ. Данных о росте его концентрации в атмосфере нет.

Диоксид карбона (углекислый газ) (СО2) — важнейший источник климатических изменений, на долю которого может приходиться около 64% глобального потепления.

Основными источниками выброса углекислого газа в атмосферу являются:

  • производство, транспортировка, переработка и потребление ископаемого топлива (86%);
  • сведение тропических лесов и другое сжигание биомассы (12%);
  • остальные источники (2%), например, производство цемента и окисление моноксида углерода.

Закись азота (N2O) — третий по значимости парниковый газ Киотского протокола. На него приходится около 6 % глобального потепления. Выделяется при производстве и применении минеральных удобрений, в химической промышленности, в сельском хозяйстве и т.п.

Перфторуглероды — ПФУ (Perfluorocarbons — PFCs). Углеводородные соединения, в которых фтор частично замещает углерод. Основными источниками эмиссии этих газов является производство алюминия, электроники и растворителей.

Гидрофторуглероды (ГФУ) — углеводородные соединения, в которых галогены частично замещают водород.

Гексафторид серы (SF6) — парниковый газ, использующийся в качестве электроизоляционного материала в электроэнергетике. Выбросы происходят при его производстве и использовании. Чрезвычайно долго сохраняется в атмосфере и является активным поглотителем инфракрасного излучения. Поэтому это соединение, даже при относительно небольших выбросах, обладает потенциальной возможностью влиять на климат в течение продолжительного времени в будущем.

Сокращение выбросов парниковых газов

Рекомендованные направления политики и меры по сокращению выбросов парниковых газов, определенные в Киотском протоколе, включают в себя:

1. Повышение эффективности использования энергии в соответствующих секторах национальной экономики;

2. Охрана и повышение качества поглотителей и накопителей парниковых газов с учетом своих обязательств по соответствующим международным природоохранным соглашениям; содействие рациональным методам ведения лесного хозяйства, облесению и лесовозобновлению на устойчивой основе;

3. Поощрение устойчивых форм сельского хозяйства в свете соображений, связанных с изменением климата;

4. Содействие внедрению, проведению исследовательских работ, разработка и более широкое использование новых и возобновляемых видов энергии, технологий поглощения диоксида углерода и инновационных экологически безопасных технологий;

5. Постепенное сокращение или устранение рыночных диспропорций, фискальных стимулов, освобождение от налогов и пошлин, субсидий, противоречащих цели Конвенции, во всех секторах-источниках выбросов парниковых газов и применение рыночных инструментов;

6. Поощрение надлежащих реформ в соответствующих секторах в целях содействия осуществлению политики и мер, ограничивающих или сокращающих выбросы парниковых газов;

7. Меры по ограничению и/или сокращению выбросов парниковых газов на транспорте;

Ограничение и/или сокращение выбросов метана путем рекуперации и использования при удалении отходов, а также при производстве, транспортировке и распределении энергии.

Данные положения Протокола носят общий характер и предоставляют Сторонам возможность самостоятельно выбирать и реализовывать тот комплекс политики и мер, который будет в максимальной степени соответствовать национальным обстоятельствам и приоритетам.

Парниковые газы в России

Основной источник выбросов парниковых газов в России это:

  • энергетический сектор (71%);
  • добыча угля, нефти и газа (16%);
  • промышленность и строительство (около 13%).

Таким образом, наибольший вклад в снижение выбросов парниковых газов в России может внести реализация огромного потенциала энергосбережения. В настоящее время энергоемкость экономики страны превышает среднемировой показатель в 2,3 раза, а средний показатель для стран ЕС — в 3,2 раза. Потенциал энергосбережения в России оценивается в 39–47% текущего потребления энергии, и, в основном, он приходится на производство электроэнергии, передачу и распределение тепловой энергии, отрасли промышленности и непроизводительные энергопотери в зданиях.

Киотский протокол — международное соглашение, принятое в Киото (Япония) в декабре 1997 года в дополнение к Рамочной конвенции ООН об изменении климата (РКИК). Оно обязывает развитые страны и страны с переходной экономикой сократить или стабилизировать выбросы парниковых газов.

Новый газ?

Недавно канадские ученые заявили, что открыли новый парниковый газ. Его название — перфтортрибутиламин. С середины ХХ века он используется в области электротехники. В природе данное вещество не встречается. Ученые выяснили, что PFTBA прогревает атмосферу в 7000 раз сильнее, чем углекислый газ. Тем не менее на данный момент концентрация данного вещества ничтожно мала и не несет угрозы экологии.
На данный момент задача исследователей заключается в том, чтобы контролировать количества данного газа в атмосфере. Если будет отмечен рост показателя, это может привести к значительному изменению климатических условий и радиационного фона. На данный же момент нет оснований принимать какие-либо меры по реорганизации производственного процесса.

Немного о парниковом эффекте

Для того чтобы в полной мере оценить разрушительную силу парникового эффекта, стоит обратить внимание на планету Венера. Из-за того что ее атмосфера практически полностью состоит из углекислого газа, температура воздуха у поверхности достигает 500 градусов. Учитывая выбросы парниковых газов в атмосферу Земли, ученые не исключают аналогичного развития событий в будущем. на данный же момент планету во многом спасают океаны, которые способствуют частичному очищению воздуха.
Парниковые газы образуют своего рода барьер, который нарушает циркуляцию тепла в атмосфере. Именно это и является причиной парникового эффекта. Данное явление сопровождается значительным повышением среднегодовой температуры воздуха, а также учащению природных катаклизмов (особенно в прибрежных зонах). Это чревато исчезновением многих видов животных и растений. На данный момент ситуация настолько серьезная, что решить проблему парникового эффекта полностью уже нельзя. Тем не менее еще возможно контролировать данный процесс и смягчать его последствия.

Возможные последствия

Парниковые газы в атмосфере — это основная причина изменения климата в сторону потепления. Последствия могут быть следующими:

  • Повышение влажности климата за счет увеличения количества осадков. Тем не менее это справедливо только для тех регионов, которые и так постоянно страдают от аномальных ливней и снегопадов. А в засушливых районах ситуация станет еще более плачевной, что приведет к дефициту питьевой воды.
  • Повышение уровня мирового океана. Это может привести к затоплению части территорий островных и прибрежных государств.
  • Исчезновение до 40 % видов растений и животных. Это прямое последствие изменения среды обитания и роста.
  • Уменьшение площади ледников, а также таяние снега на горных вершинах. Это опасно не только в плане исчезновения видов флоры и фауны, но также в плане схода лавин, селей и оползней.
  • Снижение производительности сельского хозяйства в странах с засушливым климатом. Там же, где условия можно считать умеренными, есть вероятность повышения урожайности, но это не спасет население от голода.
  • Нехватка питьевой воды, которая связана с иссушением подземных источников. Это явление может быть связано не только с перегреванием Земли, но также с таянием ледников.
  • Ухудшение состояния здоровья человека. Это связано не только с ухудшением качества воздуха и повышенной радиацией, но также и с сокращением количества продуктов питания.

Уменьшение выбросов парниковых газов

Не секрет, что состояние экологии Земли с каждым годом ухудшается. Расчет парниковых газов приводит к неутешительным выводам, а потому актуальным становится принятие мер по уменьшению количества выбросов. Этого можно достичь следующим образом:

  • повышение эффективности производства с целью сокращения количества используемых энергетических ресурсов;
  • охрана и увеличение количества растений, которые выступают поглотителями парниковых газов (рационализация ведения лесного хозяйства);
  • поощрение и поддержка развития форм сельского хозяйства, которые не наносят вреда окружающей среде;
  • разработка финансовых стимулов, а также снижение налогообложения для предприятий, которые работают в соответствии с концепцией экологической ответственности;
  • принятие мер по снижению выброса парниковых газов транспортными средствами;
  • увеличение штрафных санкций за загрязнение окружающей среды.

Расчет парниковых газов

Все субъекты хозяйствования обязаны регулярно рассчитывать ущерб, нанесенный окружающей среде, и подавать отчетную документацию в соответствующие органы. Так, количественное определение выбросов парниковых газов осуществляется следующим образом:

  • выявление количества топлива, которое сжигается в течение года;
  • умножение полученного показателя на коэффициент выбросов по каждому виду газа;
  • объем выбросов каждого вещества пересчитывается в эквиваленте углекислого газа.

Программы добровольной углеродной отчётности

Углеродная отчётность сегодня является обязательной для отдельных секторов и компаний в нескольких десятках стран. При этом количество компаний, добровольно раскрывающих информацию о своих выбросах и углеродном следе, постоянно увеличивается.

Добровольная углеродная отчётность проводится с использованием стандартов, описывающих методологии и процессы раскрытия информации по выбросам парниковых газов. Организации проводят количественную оценку выбросов парниковых газов с последующим сбором результатов в электронную базу данных и составлением регистра, содержащего информацию по корпоративным выбросам парниковых газов.

Существуют различные программы углеродной отчётности и организации, занимающиеся разработкой и внедрением методологий расчёта выбросов. Независимая международная добровольная углеродная отчётность представлена GHG Protocol Corporate Standard, Gold Standard, Verified Carbon Standard (VERRA), American Carbon Registry, Voluntary Offset Standard, Climate Action Reserve, Plan Vivo, CarbonFix Standard, Green-e Standard, CDP, EU ETS, DAO IPCI (Платформа интеграции климатических инициатив), а также национальными программами.

Организации и программы реализуют различные задачи, например:

1. Greenhouse Gas Protocol (GHG Protocol) представляет методологию расчёта выбросов для разных секторов промышленного производства (например, целлюлозно-бумажная, деревообрабатывающая промышленность), разных операционных процессов (от работы теплоэлектростанций, холодильного оборудования и пр.), производства продуктов с учётом страны производства (алюминия, аммиака, цемента, железа и стали и пр.).

2. American Carbon Registry (ACR) — осуществляет регистрацию и проверку проектов по компенсации выбросов углерода на основании утверждённых методологий.

3. Carbon Disclosure Project (CDP) представляет глобальную систему раскрытия информации, которая позволяет компаниям, городам и регионам измерять воздействия на окружающую среду и управлять ими.

Выбросы CO2 от сжигания топлива по странам. Мировые тенденции

Международное энергетическое агентство (International Energy Agency, IEA) составило рейтинг стран в зависимости от объёма углекислого газа, выделяемого от сжигания топлива. Агентство оценивает выбросы углекислого газа при сжигании угля, природного газа, нефти и других видов топлива, включая промышленные и муниципальные отходы.

В табл. 3 приведены данные из 20 стран, которые произвели больше всего углекислого газа в 2015 году (самые последние доступные данные).

Мировая статистика (рис. 1) показывает, что в пересчёте выбросов углекислого газа на душу населения такие страны, как США, Канада, Саудовская Аравия и Австралия обладают самыми высокими показателями.

Одной из причин этого является необходимость сжигания ископаемого топлива для производства электроэнергии и тепла, а также транспортная составляющая, в том числе высокая автомобилизация населения (причём в указанных странах преобладают крупные автомобили с бензиновыми либо дизельными двигателями, которые нельзя назвать экономичными). В Саудовской Аравии сжигание топлива связано с жарким климатом, обуславливающим круглогодичное использование систем охлаждения.

Представленные данные говорят о том, что развитые страны и страны с развивающейся экономикой в целом лидируют по общему объёму выбросов углекислого газа. Развитые страны обычно имеют высокие выбросы CO2 на душу населения, в то время как некоторые развивающиеся страны лидируют по общим темпам роста выбросов углекислого газа.

Источники выбросов, связанные со сжиганием топлива

Развитие научно-технического прогресса, безусловно, облегчает жизнь человеку, но наносит непоправимый вред окружающей среде. Во многом это связано со сжиганием топлива. В связи с этим источники парниковых газов могут быть следующими:

  • Энергетическая отрасль. Сюда входят электростанции, которые снабжают ресурсами промышленные предприятия и жилые объекты.
  • Промышленность и строительство. К данной категории относят предприятия всех отраслей. Учет осуществляется по топливу, использованному в процессе производства, а также на вспомогательные нужды.
  • Транспорт. Вредные вещества в атмосферу выделяют не только автомобили, но также воздушные средства передвижения, поезда, водный транспорт и трубопроводы. Учитывается только топливо, использованное на непосредственное перемещение грузов или пассажиров. Затраты энергии на внутренние хозяйственные перевозки сюда не относятся.
  • Коммунальный сектор. Это сфера услуг и ЖКХ. Значение имеет тот объем топлива, который был потрачен на обеспечение конечного энергопотребления.

Проблема парниковых газов в России

Масса выбросов парниковых газов в России с каждым годом возрастает. Если рассмотреть структуру загрязнений по секторам, то картина будет следующей:

  • энергетическая отрасль — 71 %;
  • добыча топлива — 16 %;
  • промышленное производство и строительство — 13 %.

Таким образом, приоритетным направлением в работе по снижению выбросов вредных газов в атмосферу является именно энергетический сектор. Показатель использования ресурсов отечественными потребителями более чем в 2 раза превышает мировой показатель и в 3 раза — европейский. Потенциал снижения энергопотребления достигает 47 %.

Загрязнение парниковыми газами является глобальной проблемой и рассматривается на самом высоком международном уровне. Тем не менее она касается каждого отдельно взятого человека. Таким образом, должно присутствовать чувство персональной ответственности за состояние окружающей среды. Минимальный вклад каждого человека — это высадка зеленых насаждений, соблюдение правил противопожарной безопасности в лесах, а также использование в быту безопасных продуктов и товаров. Если говорить о будущих перспективах, речь может идти о переходе на электромобили и безопасное отопление жилых домов. Огромный вклад в сохранение окружающей среды призвана внести пропагандистская и просветительская деятельность.

Исходные данные для определения выбросов CO2 в течение всего жизненного цикла продукции

Информация о выбросах на всех стадиях жизненного цикла используется из экологических деклараций продукции Environmental Product Declaration (EPD), а также из специализированных баз данных типа Impact, Athena, One-Click-LCA.

Экологические декларации продукции проводятся в соответствии с принципами ISO 14025 (Environmental labels and declarations. Type III environmental declarations. Principles and procedures) и должны соответствовать требованиям стандартов EN 15804 (PD standard for sustainability of construction works and services) или ISO 21930 (Sustainability in buildings and civil engineering works — Core rules for environmental product declarations of construction products and services).

Стандарт ISO 14025 позволяет рассчитывать экологические показатели выбранной продукции определённой категории на всех этапах её жизненного цикла.

Итоговые экологические декларации имеют форму технического отчёта, готовятся независимой экспертной организацией на основе исследований жизненного цикла конкретного вида и типа продукции. Зарегистрированная торговая марка Environmental Product Declaration — это глобальная программа для экологических деклараций, основанная на ISO 14025 и EN 15804. Онлайн-база данных EPD в настоящее время содержит более 1100 EPD для широкого спектра категорий продуктов организаций в 45 странах.

Особое внимание следует уделить специфике применяемых стандартов:

1. ISO 21930:2017 предоставляет принципы, спецификации и требования для разработки экологической декларации продукции EPD непосредственно для строительной продукции и систем, используемых в любом типе строительства. ISO 21930:2017 дополняет ISO 14025, предоставляя особые требования к EPD строительных продуктов и услуг. Кроме того, ISO 21930:2017 устанавливает требования к категориям продукции Product Category Rules (PCR), которые должны учитываться при разработке EPD для любой строительной продукции, также стандарт описывает правила расчёта при проведении инвентаризационного анализа Life Cycle Inventory (LCI), определённые экологические индикаторы и результаты оценки воздействия жизненного цикла Life Cycle Impact Assessment (LCIA), которые представляются в EPD.

2. EN 15804. Этот стандарт гармонизирует структуру EPD для строительной отрасли, делая информацию прозрачной и сопоставимой. Стандарт впервые опубликован в 2012 году и официально известен как EN 15804 + A1 «Устойчивость строительных работ. Экологические декларации на продукцию. Основные правила для категории продуктов — строительная продукция». В настоящее время разрабатывается вторая версия стандарта, которая называется EN 15804 + A2. Новая версия соответствует принципам оценки экологического следа продукции Product Environmental Footprint (PEF).

Стандарт EN 15804 не имеет разных правил для разных строительных изделий и предоставляет несколько вариантов методологического выбора. Стандарт описывает последовательность разработки деклараций III типа, предназначенных для оценки устойчивости строительной продукции.

Стандарт EN 15804 описывает структуру для создания трёх различных типов EPD:

  • «От колыбели до ворот предприятия» (Cradle-to-Gate) — включает в себя этапы от добычи сырья до этапа производства строительной продукции.
  • «От колыбели до ворот предприятия» с опциями — от этапа добычи сырья до транспортировки и изготовления строительной продукции, а также другие выбранные этапы жизненного цикла (например, использование продукта, его техническое обслуживание, восстановление, переработка отходов и т. д.).
  • «От колыбели до могилы» (Cradle-toGrave) — включает все этапы жизненного цикла от этапа добычи сырья до утилизации строительной продукции.

На рынке существует несколько программ для проведения оценки жизненного цикла материалов, например, SimaPro, GaBi Software.

Для российских строительных материалов доступно лишь небольшое количество экологических деклараций (в основном это продукция компаний Saint-Gobain, Rockwool и Knauf), поэтому для оценки материалов в российских проектах используются экологические декларации схожих по характеристикам материалов производителей из других стран.

Оценка выбросов на всём ЖЦ — для строительной продукции и зданий

Количественная оценка выбросов, в том числе выбросов парниковых газов на всём жизненном цикле здания является критически важной задачей в период остро стоящей проблемы изменения климата. Только оценив общий объём выбросов можно определить источники наибольших выбросов и предложить решения для их сокращения.

Зачем проводить оценку выбросов на всём жизненном цикле здания?

Есть несколько ответов на этот вопрос:

1. Крупные, а особенно международные инвесторы, арендаторы и другие заинтересованные стороны всё чаще требуют прозрачности, особенно когда речь идёт об углеродном следе и других воздействиях здания на окружающую среду. Оценка выбросов на всём жизненном цикле обеспечивает эту прозрачность.

2. Некоторые инвесторы хотят применения системы сертификации экологически безопасных зданий, таких как BREEAM или LEED, в рамках реализации которых требуется проведение оценки жизненного цикла здания на всех этапах.

3. Наконец, если существует заинтересованность в реализации корпоративной экологической политики, оценка ЖЦ здания является наиболее надёжным способом количественной оценки углерода в цепочке поставок строительных материалов и реализации проекта.

Как проводится оценка ЖЦ здания?

Оценка жизненного цикла здания проводится в три этапа:

1. Импорт данных проектирования из информационных и энергетических моделей здания или расчётных электронных таблиц. Анализ данных для определения возможностей для улучшения проекта по параметру выбросов.

2. Применение альтернативных решений проектирования с целью снижения воздействия от здания на окружающую среду.

3. Итоговый расчёт выбросов с финальными проектными решениями и выбранными строительными материалами.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *